Search results for "Random permutation"
showing 5 items of 5 documents
Quantum lower bound for inverting a permutation with advice
2014
Given a random permutation $f: [N] \to [N]$ as a black box and $y \in [N]$, we want to output $x = f^{-1}(y)$. Supplementary to our input, we are given classical advice in the form of a pre-computed data structure; this advice can depend on the permutation but \emph{not} on the input $y$. Classically, there is a data structure of size $\tilde{O}(S)$ and an algorithm that with the help of the data structure, given $f(x)$, can invert $f$ in time $\tilde{O}(T)$, for every choice of parameters $S$, $T$, such that $S\cdot T \ge N$. We prove a quantum lower bound of $T^2\cdot S \ge \tilde{\Omega}(\epsilon N)$ for quantum algorithms that invert a random permutation $f$ on an $\epsilon$ fraction of…
A Note on Resampling the Integration Across the Correlation Integral with Alternative Ranges
2003
Abstract This paper reconsiders the nonlinearity test proposed by Ko[cbreve]enda (Ko[cbreve]enda, E. (2001). An alternative to the BDS test: integration across the correlation integral. Econometric Reviews20:337–351). When the analyzed series is non‐Gaussian, the empirical rejection rates can be much larger than the nominal size. In this context, the necessity of tabulating the empirical distribution of the statistic each time the test is computed is stressed. To that end, simple random permutation works reasonably well. This paper also shows, through Monte Carlo experiments, that Ko[cbreve]enda's test can be more powerful than the Brock et al. (Brock, W., Dechert, D., Scheickman, J., LeBar…
The pure descent statistic on permutations
2017
International audience; We introduce a new statistic based on permutation descents which has a distribution given by the Stirling numbers of the first kind, i.e., with the same distribution as for the number of cycles in permutations. We study this statistic on the sets of permutations avoiding one pattern of length three by giving bivariate generating functions. As a consequence, new classes of permutations enumerated by the Motzkin numbers are obtained. Finally, we deduce results about the popularity of the pure descents in all these restricted sets. (C) 2017 Elsevier B.V. All rights reserved.
On the Analysis of a Random Interleaving Walk–Jump Process with Applications to Testing
2011
Abstract Although random walks (RWs) with single-step transitions have been extensively studied for almost a century as seen in Feller (1968), problems involving the analysis of RWs that contain interleaving random steps and random “jumps” are intrinsically hard. In this article, we consider the analysis of one such fascinating RW, where every step is paired with its counterpart random jump. In addition to this RW being conceptually interesting, it has applications in testing of entities (components or personnel), where the entity is never allowed to make more than a prespecified number of consecutive failures. The article contains the analysis of the chain, some fascinating limiting proper…
Generating restricted classes of involutions, Bell and Stirling permutations
2010
AbstractWe present a recursive generating algorithm for unrestricted permutations which is based on both the decomposition of a permutation as a product of transpositions and that as a union of disjoint cycles. It generates permutations at each recursive step and slight modifications of it produce generating algorithms for Bell permutations and involutions. Further refinements yield algorithms for these classes of permutations subject to additional restrictions: a given number of cycles or/and fixed points. We obtain, as particular cases, generating algorithms for permutations counted by the Stirling numbers of the first and second kind, even permutations, fixed-point-free involutions and d…